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Likelihood Analysis of Disequilibrium Mapping, and Related Problems
Bruce Rannala and Montgomery Slatkin
Department of Integrative Biology, University of California Berkeley, Berkeley

Summary

In this paper a theory is developed that provides the
sampling distribution of alleles at a diallelic marker locus
closely linked to a low-frequency allele that arose as a
single mutant. The sampling distribution provides a ba-
sis for maximum-likelihood estimation of either the re-
combination rate, the mutation rate, or the age of the
allele, provided that the two other parameters are
known. This theory is applied to (1) the data of Häst-
backa et al., to estimate the recombination rate between
a locus associated with diastrophic dysplasia and a
linked RFLP marker; (2) the data of Risch et al., to
estimate the age of a presumptive allele causing idio-
pathic distortion dystonia in Ashkenazi jews; and (3) the
data of Tishkoff et al., to estimate the date at which, at
the CD4 locus, non-African lineages diverged from Af-
rican lineages. We conclude that the extent of linkage
disequilibrium can lead to relatively accurate estimates
of recombination and mutation rates and that those es-
timates are not very sensitive to parameters, such as the
population age, whose values are not known with cer-
tainty. In contrast, we also conclude that, in many cases,
linkage disequilibrium may not lead to useful estimates
of allele age, because of the relatively large degree of
uncertainly in those estimates.

Introduction

The presence of a nonrandom association either among
alleles at two loci or between a disease phenotype and
alleles at one or more marker loci indicates a recent
shared history and can be used to estimate either the
recombination rate or allele age (Lander and Botstein
1986). The principle underlying this approach is simple
and relies on the fact that the extent of linkage dise-
quilibrium decays exponentially with time, at a rate pro-
portional to the recombination rate. If either the time
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span or the recombination rate is known, the other pa-
rameter can be estimated from the coefficient of linkage
disequilibrium. This approach has been used several
times. For example, Serre et al. (1990) used the extent
of disequilibrium between the DF508 allele at the cystic
fibrosis (CFTR) locus and a linked marker to estimate
the age of that allele in European populations. Häst-
backa et al. (1992) estimated the recombination rate
between a microsatellite marker and a locus responsible
for diastrophic dysplasia (DTD) in a Finnish population.
Risch et al. (1995) used the extent of linkage disequi-
librium between marker loci associated with idiopathic
torsion dystonia (ITD) to estimate the age of a putative
mutation causing that disease in Ashkenazi Jews. Tish-
koff et al. (1996) applied similar reasoning to markers
within the CD4 locus, in order to estimate the time at
which the ancestors of non-Africans diverged from
Africans.

The estimation of parameters on the basis of dise-
quilibrium data raises several questions, in particular
whether estimates are biased and what the associated
confidence intervals are. To answer these questions, a
statistical model is needed. Hästbacka et al. (1992) as-
sumed that the Luria-Delbrück theory, originally devel-
oped to estimate mutation rates in bacteria, could be
applied to estimate recombination rates in human pop-
ulations. This application was questioned by Kaplan et
al. (1995) and Kaplan and Weir (1995), who argued
that “evolutionary variability” is not adequately ac-
counted for by the Luria-Delbrück theory. They showed
that accounting for that variability results in a confidence
interval wider than that obtained by Hästbacka et al.
(1992). Pritchard and Feldman (1996) made a similar
point about the Tishkoff et al. (1996) conclusion, ar-
guing that variability in the evolutionary process will
make the confidence interval for the estimated time of
origin of non-Africans much wider than had been sug-
gested by Tishkoff et al. (1996).

In this paper, we address the same statistical issues but
use a model that more adequately accounts for all
sources of variation. This approach will allow us to
make precise both the notion of evolutionary variability
and its role in parameter estimation and will allow us
to find the approximate confidence intervals for esti-
mates of parameter values. We will show that, under
many conditions, including those that arise in practice,
relatively accurate estimates of recombination (or mu-
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Figure 1 Gene genealogy of a population of chromosomes de-
scended from a nonrecurrent mutation, M, that occurred at a time t1

generations in the past. a, Genealogy of a population of 12 chromo-
somes. Mutant lineages are denoted by broken lines, and nonmutant
lineages are denoted by unbroken lines. Arrows indicate the chro-
mosomes that are sampled from the population. The time, t1, at which
the mutation occurred is denoted by a blackened circle. The time, t2,
at which mutant chromosomes first share a most recent common an-
cestor is denoted by an unblackened circle. The waiting times until
mutant chromosomes coalesce to shared ancestral chromosomes are
shown on the right, where t7 is the waiting time until the seven chro-
mosomes coalesce to six ancestral chromosomes, t6 is the waiting time
until they coalesce to five ancestral chromosomes, etc. b, Genealogy
for a sample of four of the seven mutant chromosomes obtained by
sampling from the population shown in a. The chromosomes that are
sampled are indicated by arrows in a. The waiting times for the four
sampled chromosomes to coalesce to common ancestral chromosomes
are indicated on the right. Although t1 remains fixed in the genealogy
of this sample, t2 is more recent than it is for mutant chromosomes
from the whole population (compare the position of the unblackened
circle in a with that of the unblackened circle in b). The waiting time
t2 until a sample of chromosomes first share a common ancestral chro-
mosome is a random variable that is influenced by the time at which
the mutation occurred, as well as by both the fraction of chromosomes
sampled from the population and the population growth rate and/or
selection coefficient.

tation) rates can be obtained and that those estimates
are often nearly independent of the time of origin of the
population sampled. We will also show that in some
cases there is little information about the time of origin
of an allele. Although high levels of linkage disequilib-
rium are usually interpreted as evidence of recent origin,
we find that it may be impossible to reject the hypothesis
that the allele arose at a time indefinitely long ago.

We begin by reviewing several existing estimators and
their statistical properties, then develop the theory un-
derlying our likelihood method, and finally apply our
method to three cases, DTD (Hästbacka et al. 1992),
ITD (Risch et al. 1995), and the CD4 locus (Tishkoff et
al. 1996).

Existing Methods of Parameter Estimation

Throughout, we will be concerned with a locus at
which a mutant allele M arose t1 generations ago, a locus
that is linked to a marker locus with two alleles, A1 and
A2. The data consist of a sample of i chromosomes car-
rying M, with Y0 of the i chromosomes carrying A1. The
number Y0, which can take values from 0 to i, is the
observed configuration of haplotypes in the sample. The
statistical problem is to use i, Y0, and information about
the population from which the sample was drawn, to
estimate either t1, the time of origin of M; c, the recom-
bination rate between M and the marker locus; or m, the
mutation rate at the marker locus.

The history of the i M-bearing chromosomes can be
represented by a gene genealogy, as shown in figure 1a.
The age of the most recent common ancestor is t2, also
called the “age of the root” of the genealogy. The ge-
nealogy is characterized by the ancestor-descendent
(branching) relationships among chromosomes and by
the times of the branching events (nodes), which we will
denote by t2, . . . , ti and will call the “coalescence times.”
If a continuous time approximation is used to describe
the genealogy of the mutant class (see Slatkin and Ran-
nala 1997), then only two branches arise at each node,
and there are exactly nodes.i � 1

The definition of the age of an allele is problematic.
In our notation, the mutation M arose t1 generations ago
but was present in only one ancestral lineage during the
time interval (t1, t2). Therefore, t1 is the age of the allele,
whereas t2 is the age of the root of the allelic-gene ge-
nealogy. Any recombination or mutation events during
the interval (t1, t2) only change the identity of the marker
allele that is on the M-bearing chromosome immediately
before t2, and that allele is the one that is initially in
perfect linkage disequilibrium with M. Therefore, it
would appear that using the configuration of haplotypes
in a sample would necessarily result in an estimate of
t2; but that is true only if the estimate is based on the
observed configuration alone, as is the case with the

method-of-moments estimator discussed below. In con-
trast, if an estimate is based on an explicit population-
genetic model, then it is possible to estimate either t1 or
t2, because the length of the interval (t1–t2) is a random
variable whose distribution is determined by the model.
Because t1 is the time at which the mutation first arose,
it is probably the parameter of greater interest. The age
of the root, t2, has a distribution that depends also on
the number of chromosomes sampled from the popu-
lation (see fig. 1b).

A commonly used estimator of t2, m, or c is what we
will call the “moments estimator.” It is based on the
expected exponential decay of linkage disequilibrium
over time, as a result of mutation and recombination
(Lander and Botstein 1986). If the recombination (or
mutation process) is irreversible, which, in the case of
recombination, implies that A1 occurs at very low fre-
quency on non-M chromosomes, then the probability
that any particular lineage has not experienced a recom-
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bination (or mutation) event since t2 is , where�ut2Q � e
u is the rate of recombination (or mutation) per lineage
per generation. In a sample of i M-bearing chromosomes,
the expected value of Y0, the number of chromosomes
carrying A1, is iQ. An estimator of either u or t2 may
then be obtained by equating the observed value of Y0

with its expectation. We call this the “moments” esti-
mator, because it is based on the standard method of
moments for estimation of parameters. If u is known,
the moments estimator of t2 is

ˆ [ ]t � log(i) � log(i � Y ) /u .2 0

If t2 is known, then u is estimated by exchanging u and
t2.

The moments estimator makes intuitive sense, but that
intuition provides no guide to either the extent of bias
or the confidence interval. The complete distribution of
Y0 in a sample—and, hence, the performance of the mo-
ments estimator—depends on the genealogy of M, which
in turn depends on demographic parameters such as the
population growth rate, the selection affecting M, and
the fraction of M-bearing chromosomes in the popula-
tion that are sampled. We can, however, consider an
extreme case in which the moments estimator is also the
maximum-likelihood estimator (MLE). If the coales-
cence times in the genealogy satisfy ,t � t � ... � ti i�1 2

which means that the gene genealogy is a “star” gene-
alogy, then the moments estimator is also an MLE (see
Appendix A). In general, a star genealogy provides a
poor description of the genealogies expected when we
consider the descendants of a particular mutant class
(i.e., the intraallelic genealogy), although star genealo-
gies may arise for population samples (i.e., chromosomes
not restricted to a particular mutant class) in very rapidly
growing populations (Slatkin and Hudson 1991).

Several studies have tried to take genealogy into ac-
count. Hästbacka et al. (1992) used the Luria-Delbrück
theory, originally developed for the analysis of mutations
in bacteria, as a demographic model for the analysis of
linkage disequilibrium at a disease locus in the Finnish
population. The Luria-Delbrück theory assumes that the
genealogy is a result of successive synchronized binary
fissions, representing the continued doubling of bacterial
cells in culture. In our notation, that implies that t �3

, , etc., and that the intervals betweent t � t � t � t4 5 6 7 8

successive doublings are the same. The method thus does
not adequately account for stochastic variations in the
coalescence times. In their application of the Luria-Del-
brück theory to the Finnish population, Hästbacka et
al. (1992) assumed that the time of origin of the pop-
ulation was 100 generations in the past and that a single
copy of a disease mutation existed at that time, so that

. The recombination rate between the disease-t � 1001

associated locus and a marker locus was the unknown
parameter to be estimated.

Kaplan et al. (1995) developed a likelihood method
for the estimation of recombination rates in the context
of disequilibrium mapping. Their approach is similar to
ours, in that it assumes that the M-bearing chromosomes
all descend from a single ancestral chromosome and that
their numbers can be modeled by a stochastic process.
Kaplan et al. used a discrete-time branching process,
whereas we use a continuous-time birth-death process,
but the difference is minor, apart from the fact that the
continuous-time model is more easily studied by use of
analytical methods and leads to more efficient compu-
tations. The important difference between our approach
and that of Kaplan et al. is the way in which sampling
is accounted for. In any study, the i M-bearing chro-
mosomes in the sample come from a larger number of
mutant chromosomes in the whole population. The total
number of mutants can be estimated from the frequency
of M and the size of the population from which the
sample was drawn. Kaplan et al. accounted for sampling
by selecting, among simulated histories of M-bearing
chromosomes, those for which the total number of cop-
ies in the simulated data were in the range of the esti-
mated total number of copies in the population. From
this subset of simulations, they could estimate the prob-
ability of finding the observed proportion of MA1 chro-
mosomes and, hence, the likelihood. Kaplan et al. (1995)
noted that their results were not sensitive to the esti-
mated number of copies in the population. In our anal-
ysis, we explicitly model the sampling of M chromo-
somes so that we are able to obtain the likelihood of the
observed configuration of haplotypes directly.

Thompson and Neel (1997) used another approach
for modeling the genealogy of a mutant allele. They as-
sumed that the total number of mutant chromosomes is
equal to the expected number under a branching process,
conditioned on nonextinction. The genealogy of a sam-
ple of mutant chromosomes was then modeled by use
of a standard coalescent process for a population of
variable size. This method provides an approximation
to the gene genealogy of the mutants and could provide
a potential way to approximate the likelihood of a con-
figuration at a marker locus, although Thompson and
Neel (1997) did not address that problem.

Xiong and Guo (1997) also adopt a likelihood ap-
proach, but they base it on a different approximation.
They assume that the likelihood can be approximated
by a quadratic function of the recombination rate, and
they use a diffusion method for determining the coeffi-
cients of the quadratic function. Xiong and Guo em-
phasize the computational efficiency of their method and
point out that it can be easily generalized to cases with
more than two alleles at a marker locus and more than
one marker locus. They applied their method to several
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Figure 2 Intraallelic gene genealogy illustrating the effects of
recombination and mutation involving a marker locus A linked to a
nonrecurrent mutation M. There are two alleles for the linked marker:
A1 and A2. The distribution of the two haplotypes MA1 and MA2 is
shown for a sample of chromosomes descended from the ancestral
haplotype, MA1 (indicated by a blackened circle), on which the mutant
first arose. Blackened boxes superimposed on the lineages denote mu-
tation (or recombination) events, at the marker locus, of the form

, whereas unblackened boxes denote equivalent events of theA r A1 2

form .A r A2 1

published data sets and found a good agreement between
their results and actual map locations of loci that have
since been found. One potential weakness of the Xiong
and Guo method is that they assumed that the frequency
of the mutant chromosome is constant. In most cases,
however, that assumption is not valid.

All likelihood methods, including the method of Kap-
lan et al. (1995), the method of Xiong and Guo (1997),
and the one developed here, have similar goals. They
provide ways to compute the likelihood of the observed
data under different parameter values. In the cases that
we have examined, the different methods yield similar
results when applied to the problem of disequilibrium
mapping. It is less clear whether they would give similar
results when applied to the problem of estimating the
allele age. Although Kaplan et al.’s (1995) method could,
in principle, be used to estimate allele age, computational
problems would likely arise, because the time required
for each simulation would increase linearly with the as-
sumed allele age, making it difficult to obtain accurate
estimates for older alleles. It is not clear whether the
approximations made by Thompson and Neel (1997)
or Xiong and Guo (1997) would remain valid for ar-
bitrarily large assumed ages. Our method allows us to
vary allele age, with no increase in computation time.

Theoretical Analysis

A unique nonrecurrent mutation, M, occurs on a chro-
mosome at a time t1 generations in the past. The problem
is to use the observed configuration of marker alleles on
M-bearing chromosomes to estimate either the time of
origin of the mutation, t1, or other parameters, such as
the recombination rate and the mutation rate. A com-
plete description of the process that generated the ob-
served configuration of haplotypes has two components:
(i) a model of the genealogical process, which describes
both the coalescence times and the ancestor-descendent
relationships among sampled M-bearing chromosomes,
and (ii) a model of the process of recombination between
the mutation M and the linked markers and of the pro-
cess of mutation at the linked markers. The genealogy
relating a sample of chromosomes descended from a
particular nonrecurrent mutant chromosome M arising
at a time t1 generations in the past is illustrated in figure
1. The processes of recombination and mutation at
linked markers are illustrated in figure 2.

Intraallelic Coalescent

The distribution of the coalescence times for a sample
of chromosomes descended from a nonrecurrent muta-
tion, M, is derived in Appendix B and depends on three
parameters: (1) y, which incorporates the combined ef-
fects of population growth and selection, if any, affecting

individuals heterozygous for M; (2) , the frac-f � n/(2N)
tion of the population sampled, where n is the total
number of chromosomes sampled and N is the (diploid)
population size; and (3) i, the number of M-bearing chro-
mosomes in the sample. Let , where tj ist � {t , t , ..., t }2 3 i

the waiting time until i sampled M-bearing chromo-
somes coalesce to ancestral chromosomes. Thej � 1
joint probability density of has been given by Slatkint
and Rannala (1997), under the assumption that M is in
sufficiently low frequency that its numbers can be mod-
eled by a linear birth-death process.

Recombination and Mutation

A marker locus A is closely linked to M. The marker
has two alleles in the population: A1 and A2. Let m be
the instantaneous mutation rate from A1 to A2, and let
n be the instantaneous mutation rate from A2 to A1. The
instantaneous rate of recombination is c. The frequency
of A1 among nonmutant chromosomes is p, which is
assumed to have remained constant since M appeared.
We consider a diploid model, but we ignore homozygous
mutant individuals, since these will occur with negligible
frequency (for a rare mutation), focusing exclusively on
M-bearing chromosomes found in heterozygotes. Re-
combination of M-bearing chromosomes then always
involves exchanges with nonmutant chromosomes.

The probability of a transition (by either mutation or
recombination) from an MA1 to an MA2 chromosome
during an interval dt is udt, where . Theu � m � c(1 � p)
probability of a transition from an MA2 to an MA1 chro-
mosome is vdt, where . The transition prob-v � n � cp
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abilities during an interval of length t may be calculated
analytically (see Appendix C):

u v�(u� )t[ ]P (MA r MA ) � 1 � e(t) 1 2 u � v

and

v v�(u� )t[ ]P (MA r MA ) � 1 � e .(t) 2 1 u � v

For simplicity, in the derivation that follows, we will
model the processes of recombination and mutation on
the genealogy moving forward in time—rather than
backward, as we have done previously. If we ascend the
genealogy of the M-bearing chromosomes, moving for-
ward in time from the initial mutant toward the sample
of present-day descendants, all existing chromosomes
are equally likely to have given rise to the additional
chromosome that is generated at each coalescence event.
If we look forward in time, a coalescence event is seen
to be the birth of an additional mutant lineage that leaves
descendants in the sample. By considering all the possible
ways in which each coalescence event might have oc-
curred and by calculating the probability of each, we
can avoid dealing directly with the branching relation-
ships of the genealogy, yet we can still calculate the prob-
ability distribution of ancestral haplotype configurations
among mutant chromosomes after each coalescence
event in the genealogy.

If we consider the interval between the ( )th andj � 1
jth coalescence events (moving forward in time), there
are independent lineages, each undergoing a tran-j � 1
sition process as described above. At the jth coalescence
event, an additional chromosome is formed by choosing
one of the chromosomes that exist immediatelyj � 1
prior to the coalescent event, to duplicate with equal
probability, so that

Y � 1j ∗P(YFY ) � P (Y � 1FY )j j�1 j j�1( )j � 1

j � 1 � Yj ∗� P (YFY ) ,j j�1( )j � 1

where Yj denotes the number of MA1 chromosomes im-
mediately after the jth coalescence event, where Yj�1 de-
notes the number immediately after the ( )th coa-j � 1
lescence event, and where P* ( ) is the probabilityZFYj�1

the Z MA1 chromosomes exist immediately prior to the
jth coalescence event, given that Yj�1 existed immediately
after the ( )th coalescence event (see below). Supposej � 1
that immediately after the ( )th coalescence eventj � 1
there are Yj�1 MA1 chromosomes. The probability that

k of these are replaced by MA2 chromosomes immedi-
ately prior to the jth coalescence event is

Yj�1 k Y �kj�1( ) ( )P(kFY ) � uG 1 � uG , (1)j�1 ( )k

where and wherev�(u� )DtG � [1 � e ] / (u � v) Dt �
is the waiting time between coalescence eventst � tj�1 j

j and . If there are chromosomesj � 1 j � 1 � Y MAj�1 2

immediately after the ( )th coalescence event, thej � 1
probability that l of these are replaced by MA1 chro-
mosomes immediately prior to the jth coalescence event
is

j � 1 � Y l j�1�Y �lj�1 j�1( ) ( )P(lFY ) � vG 1 � vG . (2)j�1 ( )l

The number of MA1 chromosomes immediately before
the jth coalescence event is then , and′Y � Y � l � kj�1 j�1

the probability that there are MA1 chromosomes is′Yj�1

Y∗ ′ j�1P (Y FY ) � �j�1 j�1 ( )kk

j � 1 � Yj�1# ′( )Y � Y � kj�1 j�1

k Y �kj�1( ) ( )# uG 1 � uG
′ ′Y �Y �k j�1�Y �kj�1 j�1 j�1( ) ( )# vG 1 � vG ,

where the range of the sum over k depends on the specific
values of Yj and Yj�1.

The probability of any particular configuration of
haplotypes, Y0, for the i M-bearing chromosomes can
be calculated directly by taking a sum over the proba-
bilities for all possible ancestral configurations of hap-
lotypes that might have resulted in the observed hap-
lotype configuration and then integrating over the
coalescence times, to obtain

P(Y FV )0 1

t t t1 2 i�1

i i�1 1

� � � ... � ... P(Y FY , t, V )� � � 0 i 2
Y �0 Y �0 Y �0i i�1 1

t �0 t �0 t �02 3 i

i
#� P(YFY , t, V )j�2 j j�1 3

# P(Y Fp) # P(tFV )dt ...dt ,1 4 i 2

where , ,V � {u, v, p, t , i, f, y} V � {u, v, i} V �1 1 2 3

, and . There are i! terms in the{u, v, t , i} V � {i, f, y, t }1 4 1

above sum, each of which includes an ( )-dimen-i � 2
sional integral, so it is not practical to evaluate the right-
hand side of this equation explicitly for a sample of more
than ∼10 mutant chromosomes. An alternative method
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for evaluating this equation is to use Monte Carlo
integration.

Monte Carlo Integration

A Monte Carlo estimator of P( ) is obtained asY FV0 1

R
1 ˜ ˜( )P(Y FV ) ≈ �P Y FY (k), t(k); u, v ,0 1 0 iR k�1

where the sum is evaluated over R replicate Monte Carlo
realizations of the random variables and . Note˜ ˜Y (k) t(k)i

that is the kth of R independent random variablesỸ (k)i

generated from the distribution

i
P(YFt; V , p) � � P(YFY , t; V )P(Y Fp) .i 3 k�2 k k�1 3 1

Random variables are generated from this distribution
by sequential simulation from the conditional proba-
bility distributions, beginning with configuration Y1 and
ending with configuration Yi, as described below. If

, then with probability v�(u� )(t �t )1 2p ! 1 Y � 2 pe �2

and otherwise takes the value .v�(u� )(t �t )1 2v [1 � e ] Y � 02

To simulate for , we first simulate twoỸ (k) 2 ! j X ij

independent binomial random variables, h and l, from
the binomial distributions of equations (1) and (2), re-
spectively, conditional on the variate generated atỸ (k)j

the previous step. The random variable is thenỸ (k)j

obtained as . The vector of ran-˜ ˜Y (k) � Y (k) � l � hj j�1

dom variables is generated for each replicate of thet̃(k)
Monte Carlo integration by means of the simulation
method described by Slatkin and Rannala (1997).

Genealogy and the Age of a Mutation

There are limits on the allele ages that may be esti-
mated by use of genealogical information. As the time
t1 at which mutation M arose increases, the distribution
of the coalescence times converges to a stationary dis-
tribution that no longer depends on t1 (Rannala 1997).
If t1 is sufficiently large, the distribution of coalescence
times cannot be distinguished from the limiting distri-
bution (i.e., the density obtained in the limit as ).t r �1

When this is the case, the data no longer contain any
information about the parameter t1, even though there
may still be considerable linkage disequilibrium. A like-
lihood-ratio test (LRT) can be used to detect such cases
and to determine whether t1 differs significantly from
infinity, where the likelihood ratio is

ˆ[ ][ ]L � P(Y Ft r �) / P(Y Ft ) .0 1 0 1

The hypotheses are nested so that �2logL is approxi-
mately x2 distributed with 1 df. Because is at r �1

boundary condition, it is not clear that the x2 approx-

imation is justified in this case. An alternative approach
is to simulate observations under the null hypothesis that

and to generate the distribution of the statistic.t r �1

Given the demographic parameters y and f, it may be
possible to predict a priori the range of values for which
t1 may be estimated, although we do not pursue that
question in this paper. Numerical analyses suggest that,
for a fixed sample size of i copies of the mutant allele,
an increase in y or f reduces the maximum age that may
be inferred for the mutant.

Applications

DTD in Finland

DTD is an autosomal recessive disorder that has dis-
ease-associated chromosomes present at a frequency of
∼0.8% in Finland. Hästbacka et al. (1992) measured the
extent of linkage disequilibrium between disease-asso-
ciated chromosomes and several markers located within
the CSF1R locus on chromosome 5q, to estimate that
the locus carrying alleles causing DTD is ∼62 kb from
CSF1R. Subsequently, by positional cloning, Hästbacka
et al. (1994) found the locus to be ∼70 kb from CSF1R.
We can use the Hästbacka et al. (1992) data to illustrate
our method.

In the Hästbacka et al. (1992) data set, there are 146
DTD chromosomes, and, of those, all but 7 had an
EcoRI restriction site and a StyI restriction site (the 1–1
haplotype) within the CSF1R locus. Thus, in our no-
tation, and . We do not know n, thei � 146 Y � 1390

total sample size, because the DTD chromosomes were
not obtained in a population survey. This situation is
typical for disease-associated alleles, because chromo-
somes are not sampled randomly from the population
but instead are sampled disproportionately both from
individuals treated for the disease and from their close
relatives. By using the estimated frequency, 0.8%, we
can estimate how large n would have to be for us to
expect to obtain 146 disease chromosomes (on average)
in a random sample of chromosomes. To find 146 DTD
chromosomes in a sample of size n, , so146/n � .008
on average, . Given the current populationn � 18, 250
size of Finland, 5 million ( ), this hypo-6N � 5 # 10
thetical sample represents a proportion f � n/2N �

of the population. Following Hästbacka�31.825 # 10
et al. (1992), we assume that the Finnish population was
founded by 1,000 individuals ∼2,000 years, or t �1

generations ago, and that the population has grown100
exponentially since that time, at a rate of y � .085. In
the initial population, there was a single mutant copy
of the DTD allele on a chromosome carrying the 1–1
haplotype at the marker locus. That haplotype occurs
with a frequency of 3% on the nondisease chromosomes
( ). In the Hästbacka et al. (1992) data set, therep � .031
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Figure 3 Log likelihood (�) of the data, analyzed by Hästbacka
et al. (1992), for StyI marker haplotypes of chromosomes associated
with DTD in the Finnish population, as a function of the recombi-
nation rate with the marker (see text). The maximum-likelihood es-
timate of the recombination rate c, as well as the 95% confidence
interval of the estimate (i.e., the values that are X2 units of log like-
lihood below the maximum-likelihood estimate), are indicated by ar-
rows. The MLE is , with the 95% confidence intervalĉ � .0008
.0002–.0016.

is one 1–2 haplotype associated with the DTD chro-
mosome, but we will ignore that haplotype and will treat
the two restriction sites as a single marker locus. We
assume that the mutation rates at the marker locus are
0, and hence, in our notation, andu � c(1 � p ) v �1

, where c is the unknown recombination rate.cp1

We have used these parameter values and the Monte
Carlo integration method described above to compute
the likelihood of the observed haplotype configuration
as a function of c, the recombination rate between the
marker and disease locus. Figure 3 shows the log like-
lihood’s dependence on c. The maximum-likelihood es-
timate of c is .0008, and the 95% confidence interval is
.0002–.0016. This estimate of c is slightly higher than
.0006, the estimate given by Hästbacka et al. (1992),
and our confidence interval is also larger than theirs
(which was .0005–.0009). For humans, a map distance
of 1 cM (i.e., a recombination rate of .01) corresponds
to a physical distance of ∼1 Mb. The estimated recom-
bination rate .0008 therefore corresponds to a physical
distance, between the marker and the mutation, that is
∼80 kb, which is in close agreement with the actual
physical distance, now known to be ∼70 kb. Kaplan et
al. (1995) used a simulation approach to calculate the
likelihood for these data and also found a wider con-
fidence interval than did Hästbacka et al. (1992). Kaplan
et al. computed the upper bound on the estimated re-
combination rate to be .0022.

Because of the high growth rate, estimates of c are
insensitive to t1. Numerical analyses suggest that, even
if the time of the founding event for the Finnish popu-
lation was much more than 100 generations ago, the
genealogy and the resulting MLE of c would be roughly
the same.

The frequency of the mutation M in the population
also carries information about t1 (Slatkin and Rannala
1997). The MLE of t1 for the Hästbacka et al. (1992)
data, on the basis of frequency, is generations,t̂ � 111.91

with a 95% confidence interval of 94.1–146.7, when
equation (8) of Slatkin and Rannala (1997) is used. This
is quite close to the Finnish population’s estimated age
based on our knowledge of its demographic history.

ITD in Ashkenazi Jews

ITD is a movement disorder with variable clinical ef-
fects. It is relatively frequent in Ashkenazi Jews and is
best modeled as being attributable to a dominant allele
with ∼30% penetrance (Risch et al. 1995). The locus
carrying this allele has been mapped to 9q34. Risch et
al. (1995) have shown that the disease is in very strong
disequilibrium with several microsatellite marker loci,
including loci that are separated by as much as 4 cM.
These observations have suggested that most cases of
ITD in Ashkenazi Jews are caused by a single allele of

relatively recent origin. Risch et al. (1995) used these
observations to estimate the age of the mutation as being
8–22 generations.

In our analysis, we assume that the current population
size of Ashkenazi Jews is and use Risch et6N � 5 # 10
al.’s (1995) estimate of the frequency of the allele causing
ITD in Ashkenazi Jews to be 1/6000. We will analyze
54 ITD haplotypes reported by Risch et al. (1995). The
estimated value of the total sample size n, the total sam-
ple size, and54 # 6, 000 � 324, 000 f � n/(2N) �

. Historical records suggest that the rate of pop-.0324
ulation increase has been ∼1.5 fold per generation (Risch
et al. 1995), which implies a growth rate of y �

.ln(1.5) � .4055
Risch et al. (1995, table 4) have reported the haplo-

types of 59 chromosomes associated with ITD. Of these,
54 have been identified as carrying the same mutant
allele for ITD, because they have the same or nearly the
same haplotypes at three marker loci (D9S62a, D9S62b,
and D9S63) that previous analysis showed are very
closely linked and that are only slightly distal to the
presumptive disease locus (which they call “DYT1”).
Two other highly polymorphic markers (ASS and
D9S64) are in the same region. The locus ASS is esti-
mated to have a recombination rate of withc � .0181

D9S63, with a confidence interval of .007–.033, and a
recombination rate of with D9S64, with ac � .0232
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Figure 4 Log likelihood (�) curves for the estimation of the age
of the ITD allele found in high frequency in Ashkenazi Jews. Time, t,
is measured in generations, and both curves are based on the data at
the ASS locus, as described in the text; and . Then � 54 Y � 470

parameters for both curves were as follows: , ,y � .4055 u � .0164
, and . A total of 100,000 replicates of the Montev � .001548 f � .0324

Carlo integration described in the text were used to obtain the like-
lihood for each point. The upper curve is the log likelihood of t1, the
time of origin of the mutant, and the lower curve is the log likelihood
of t2, the age of the root of the mutant-gene genealogy. The broken
line shows values of log(L) that are 2 units less than the maximum
and that hence provide an approximate graphical way to determine
the upper and lower 95% confidence limits on estimates of t1 and t2.

confidence interval of .012–.042 (Risch et al. 1995). For
both markers, . One allele of ASS, allele 12, isi � 54
found on chromosomes, and its frequency onY � 470

nondisease chromosomes, p1, is .086. (The subscripts for
p, u, and v indicate the locus, ASS or D9S64.) For
D9S64, two alleles are in relatively high frequency: allele
10 is found on 16 chromosomes, and allele 2 is found
on 18 chromosomes; Risch et al. combined these into a
single ancestral category. For ASS, u � .018 # (1 �1

and , if we.086) � .0164 v � .018 # .086 � .0015481

assume that mutation can be ignored. For D9S64, we
assumed that there was no interference of recombin-
ation, so c2, the recombination rate with DYT1,
is . Hence.018 � .023 � .018 # .023 � .0406 u �2

and , when allele 2 and allele 10.035566 v � .00500342

are combined, and and ,u � .03788 v � .0002722 2

when allele 2 is assumed to be ancestral. The extensive
polymorphism on many disease chromosomes at this
locus suggests that the mutation rate might be high
enough to be important. Assuming a mutation rate of
0 makes the values of u2 and v2 minimum values, and
any increase in those parameters would tend to reduce
estimates of t1 or t2.

We can use our method to find the likelihoods for any
values of t1, the time of origin of the mutation, or t2,
the age of the root of the mutant gene genealogy, by
treating data at each marker locus separately. In the first
case, we use the intraallelic genealogy obtained by con-
ditioning on t1, and in the second case we use the in-
traallelic genealogy obtained by conditioning on t2. Fig-
ure 4 shows the results for the ASS locus. We can see
that, for shorter times, the likelihood functions for t1

and t2 are nearly the same. For both, the MLE is ∼10
generations, and the lower limit of the 95% confidence
interval is ∼2 generations. The similarity of these two
curves reflects the fact that, when t1 is small, the first
branching of the mutant-gene genealogy will occur very
soon after the mutant arises. For larger values of t1, the
difference between t2 and t1 increases, indicating that
there is a longer time during which there is a single
lineage ancestral to all copies of the mutant in the sam-
ple. As a consequence, the difference between the like-
lihoods will increase with t1. We can see, though, that,
whether the goal is to estimate t1 or t2, the upper limit
of the confidence interval is relatively large, ∼72 gen-
erations for t2 and ∼131 generations for t1. We found
similar results for the data from D9S64. When alleles 2
and 10 are combined, as in the Risch et al. (1995) anal-
ysis, the MLE of both t1 and t2 is 14 generations, with
a lower limit, for the confidence interval, of 5 genera-
tions. The upper limit is 51 generations for t2 and 71
for t1. For allele 2 alone, the MLE of both t1 and t2 is
∼25 generations, with upper confidence limits of ∼100
and ∼80 generations, respectively. On the basis of the
observed frequency of mutant chromosomes in the pop-

ulation and according to equation (8) of Slatkin and
Rannala (1997), with , the MLE of t1 is 17.8y � .4
(13.9–25.1).

Our estimates of allele age are similar to those re-
ported by Risch et al. (1995), but we find that the data
are consistent with a much wider range of allele ages
than was suggested by Risch et al. (1995). It is illustrative
to examine in more detail the reasons that we obtained
such broad confidence intervals. There are potential two
sources of error for the moments estimator of t2. First,
the time at which the original mutant M arose may be
far enough in the past that the genealogy is nearly in-
dependent of the parameter t1, as appears to be the case
for DYT1. Second, there may be large errors associated
with estimates of t1 or t2, because of the large variance
among the observed sample configurations of haplotypes
even when t1 is recent. As mentioned above, the moments
estimator is an MLE of t2 if the intraallelic genealogy is
star like, but that will not generally be the case for re-
alistic demographic models. We have examined the ef-
fects that genealogy has on the distribution of the mo-
ments estimator, by using simulations. The large effect
that genealogy can have on the distribution of the mo-
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Figure 5 Frequency distributions of estimates of t2, obtained by
use of the moments estimator of allele age, for artificial data simulated
on the basis of parameters for data on ITD that were collected from
the population of Ashkenazi Jews by Risch et al. (1995). For these
simulations, it was assumed that the actual time of the shared common
ancestor for the sampled chromosomes was , which is thet � 8.42

estimate obtained from the original data by the moments estimator.
A, Distribution of the estimator for simulated data when the popu-
lation genealogy is assumed to be a star genealogy (i.e., t � t �2 3

). B, Distribution of the estimator for simulated data when... � t � 8.4i

the distribution of genealogies is as expected on the basis of the inferred
demography of the population of Ashkenazi Jews. The average value
of the estimator for the simulated data, when a star genealogy is as-
sumed, is 7.70, and the MSE (the average squared difference between
the inferred value of the parameter and its true value 8.4) is 9.09. The
average value of the moments estimator for the data simulated by use
of the distribution of genealogies expected for the demographic par-
ameters of the population of Ashkenazi Jews is 12.0, and the MSE is
1,365.3.

ments estimator and its mean-square error is illustrated
in figure 5.

To generate the frequency distribution of the moments
estimator of t2, shown in figure 5a, we have assumed a
star genealogy and have simulated 1,000 artificial con-
figurations of haplotypes, using , which is thet � 8.42

value that Risch et al. (1995) obtained from the moments
estimator. The other parameters for these simulations
were the same as those used by Risch et al. (1995). To
generate the frequency distribution of the moments es-
timator shown in figure 5b, we simulated 1,000 artificial
configurations of haplotypes, using generations,t � 8.41

but we instead used the distribution of genealogies and
coalescence times expected on the basis of the inferred
demography for this population and used the popula-
tion-growth rate of suggested by Risch et al.y � .4
(1995). The distribution for the simulated data when a
star genealogy is assumed is unimodal and is closely
concentrated around the average, as shown in figure 5a.
In such cases, quite accurate estimates are possible: the
average of the moments estimator is 7.70, and the mean-
square error (MSE; the average squared difference be-
tween the inferred value of the parameter and its true
value, 8.4) is 9.09. Allowing the genealogy to be deter-
mined by the population demography in the simulations
results in a distinctly bimodal distribution of the statistic
and in a large associated error for the estimates: the
average is 12.0, and the MSE is 1,365.3, indicating that
the moments estimator of t2 is not very accurate.

Age of Non-African Lineages at CD4

Tishkoff et al. (1996) surveyed several populations
from different geographic regions for two very closely
linked polymorphic markers within the CD4 locus on
chromosome 12: an Alu element, in the first intron, that
is polymorphic for a 265-bp deletion, and a polymorphic
pentanucleotide short tandem repeat polymorphism
(STRP), or microsatellite, locus 5′ to exon 1 and 9.8 kb
from the Alu polymorphism. The Alu deletion (called
the “Alu(�) allele”) is not found in gorillas and chim-
panzees and thus appears to have arisen after the sep-
aration of the lineage leading to modern humans, ∼5
million years ago. Tishkoff et al. (1996) argue that
Alu(�) arose only once, on a chromosome carrying a
90-bp allele at the STRP marker, and that variability at
the STRP marker on the Alu(�) chromosomes is the
result of later mutation and recombination.

Tishkoff et al. (1996) divided their study populations
into two groups, sub-Saharan Africans (population A)
and non-Africans (population B). They found that
97.8% of the 270 non-African Alu(�) chromosomes
carried the 90-bp allele, whereas only 25.8% of the 132
African chromosomes carried that allele. Both the mu-
tation rate at the STRP locus and the recombination rate

between the two markers are unknown. Tishkoff et al.
(1996, p. 1384) assumed a mutation rate m from the 90-
bp allele to any other allele, no back mutation, and a 0
rate of recombination between the STRP and Alu mark-
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ers. Furthermore, they excluded from their analysis
STRP alleles x110 bp, because those alleles represent
the descendants of “an ancient recombination event with
an Alu(�)chromosome.” There was one such allele (size
110 bp) among the non-Africans, and there were 47
(sizes x115 bp) among the Africans. Tishkoff et al.
(1996) then assumed a Poisson mutation process, with
mutation rate m, and used the formula to ex-�mtQ � e
press the proportion of ancestral (90-bp) alleles in a
sample, as a function of t, the time of origin of each
group. Tishkoff et al. (1996) used “N” for the number
of generations, but we use t here, to be consistent with
our notation. There are two values of Q: Q �A

is the proportion of 90-bp allele on the34/85 � .40
Alu(�) chromosomes in Africans, and Q �B

is the proportion in non-Africans,264/269 � .9814
where we use “Q” instead of the “P” of Tishkoff et al.
(1996). Tishkoff et al. (1996) assumed (1) that Alu(�)
chromosomes in non-Africans are descended from a sin-
gle ancestral lineage that diverged from the African line-
ages at a time tB that is approximately the time at which
ancestors of non-Africans left Africa and (2) that the
Alu(�) allele arose by mutation million yearsX t � 5A

ago. Under the assumption of exponential decay of the
Q’s, the ratio gives aln (Q )/ ln (Q ) � t /t � 48.8A B A B

value of tB that is ∼100,000 years before present if
million years. Note that this calculation does nott � 5A

depend on either the generation time or the mutation
rate, as long as each has remained constant during the
time of interest. In this calculation, equating the expected
values of Q with those observed is equivalent to using
the moments estimator of t for each sample separately.

Because Tishkoff et al. (1996) used the moments es-
timator for allele ages in both populations, their esti-
mates are necessarily of t2. For both populations, the
values of t1 will be older by an amount that depends on
the demographic history of each population. Assuming,
as they did, that t2 for the age of the Alu(�) allele in
Africans is 5 million years implies that this allele actually
arose in the common ancestor of chimpanzees and hu-
mans but survived only in the lineage leading to humans.

We can use our maximum-likelihood method to es-
timate tB, the time of origin of non-Africans, by jointly
estimating m and tB, using the configurations of both
African and non-African Alu(�) chromosomes. We as-
sume that Africans and non-Africans have evolved in-
dependently since the dispersal of the ancestors of non-
Africans from Africa. We can then generate the likeli-
hood functions for each and then multiply these to ob-
tain the overall likelihood of the observations, as a func-
tion of the unknown parameters, m and tB. For all
combinations of parameters that we considered, the
same MLE of tB was obtained whether the likelihood
was maximized jointly for tB and m or whether m was
first estimated by use of only the African samples and

then that estimate was substituted into the likelihood to
estimate tB for non-Africans. For ease of discussion, we
will treat the two estimation problems separately.

For our analysis, we assume that the current popu-
lation size for Africans is and that the popu-9N � 10A

lation size for non-Africans is . It is rea-9N � 4 # 10B

sonable to assume a much lower rate of population
growth for Africans than for non-Africans. We assumed
initially that the Africans have descended from a pop-
ulation of 100 individuals that grew exponentially to the
current size, which implies . We�5y � 6.447 # 10A

found that the exact value of y did not matter, and, in
fact, almost the same estimates of m were obtained when
we assumed constant population sizes of 107, 108, and
109. A later start for growth of the African population,
followed by a consequently higher growth rate, did mat-
ter, as we shall show. For the non-Africans, we used both

and in our analysis. The first valuey � .002 y � .005B B

is the growth rate if the non-Africans did, in fact, arise
from a single small population that grew exponentially
for 200,000 years (10,000 generations); the larger value
of yB allows for a later initiation of exponential growth.
If the STRP alleles x110 bp are ignored, ,n � 349A

, , , , andi � 85 Y � 34 n � 1424 i � 269 Y �A 0,A B B 0,B

. These numbers are obtained from table 3 of264
Tishkoff et al. (1996), by removal of all data with allele
sizes x110 bp at the STRP locus. The sampling fractions
are and9 �7f � 349/(2 # 10 ) � 1.745 # 10 f �A B

.9 �71, 424/(8 # 10 ) � 1.78 # 10
Figure 6 shows the log likelihood as a function of m

for the African samples. The MLE of m is �65.88 # 10
( ) if we assume that t1 is�6 �62.13 # 10 , 9.63 # 10

generations. If we instead assume that52.5 # 10 t �2

generations, the results are almost the same;52.5 # 10
the MLE of m is (�6 �64.91 # 10 1.20 # 10 , 8.63 #

). Figure 7 shows the log likelihood as a function�610
of either t1 or t2, for the non-African samples, with
growth rate and mutation ratey � .002 m � 5.88 #B

. Note that the results are similar to those for ITD�610
that are shown in figure 4, in that, for shorter time pe-
riods, the likelihoods are virtually identical functions of
t1 or t2. The MLE is ∼4,100 generations (82,000 years),
and the lower confidence limit is slightly less than 1,000
generations. The upper confidence limit depends on
whether t1 or t2 is being estimated. There is no upper
confidence limit for t1, whereas the upper confidence
limit for t2 is slightly more than 100,000 generations,
or 2 million years. It is arguable whether t1 or t2 is more
relevant in this case, but which time is estimated does
not affect the main conclusion—namely, that these data
provide little reason to reject even very early dates for
the divergence of non-Africans from Africans. Similar
results were obtained for the cases with . Iny � .005B

general, larger growth rates make it even more difficult
to estimate allele ages confidently.



Rannala and Slatkin: Linkage-Disequilibrium Mapping 469

Figure 6 Log likelihood (�) of the mutation rate, m, at the STRP
locus, for sub-Saharan African samples in the Tishkoff et al. (1996)
data set. Only Alu(�) alleles X110 bp (see text) as a function of m

measured in units of 10�6 mutations/chromosome/generation are
shown. Arrows indicate the position of the bounds for the 95% con-
fidence interval of this estimate (i.e., the values that are X2 log like-
lihoods below the MLE). The parameter values used to generate this
curve were as follows: , , ,�5i � 85 Y � 34 y � 6.447 # 10 f �A 0.A A A

, and generations, where the subscript A�71.745 # 10 t � 250, 0001

denotes African populations.

The observed frequency of the Alu(�) allele also con-
tains information about t1, if the population growth rate
is known. With the MLE based on they � .002B

allele frequency, when equation (8) of Slatkin and Ran-
nala (1997) is used, is (6,882.1, 10,019.2)t̂ � 7, 139.21

generations (or 142,785 years).
It is reasonable to ask how sensitive our results are to

changes in the various parameters that we have assumed.
The assumed population sizes of African and non-Af-
ricans, which determined the values of fA and fB, make
essentially no difference. For example, if we increase fA

by a factor of 10, meaning that the current population
size of Africans is 108 instead of 109, the maximum-
likelihood estimate of m increases only slightly, to

, with the confidence interval�6 �66.9 # 10 1.7 # 10 –
. The growth rate of the African population�51.2 # 10

is more important. For example, if we assume that the
population ancestral to the modern sub-Saharan African
populations was small until 500,000 years ago (i.e.,

, rather than , generations) and4 5t � 2.5 # 10 2.5 # 101

then began to grow exponentially to a current size of
109, yA would then be , 10 times larger than�46.447 # 10
the value used to generate figure 7. The resulting MLE
of m is , almost 10 times larger than the�54.63 # 10
estimate obtained from figure 6. The effect of a larger
mutation rate on the estimated age of the non-African

populations is dramatic. With , the�5m � 4.63 # 10
maximum-likelihood estimate of t1 is ∼600 generations
(or 12,000 years), with a confidence interval of
∼100–1,000 generations, for . This estimate isy � .002B

much too recent to be consistent with the fossil and
archaeological record of modern humans.

Our conclusion about the Tishkoff et al. (1996) data
agrees with that of Pritchard and Feldman (1996), who
argued that their simulation study showed that the data
indicated a much larger upper bound for the confidence
interval on tB. Our reasons, however, are quite different.
Pritchard and Feldman (1996) argue that uncertainly in
the estimate of m results in greater uncertainty in the
estimate of tB. We agree that there is some uncertainly
in the estimate of m (see fig. 6), although we do not agree
with their method for finding the confidence interval on
the estimate of m. Our point is that, even if the mutation
rate were known, the variability in gene genealogies
alone would result in reduced confidence in estimates of
tB. Our method can be easily extended to take account
of the uncertainty in m, f, y, or other parameters, by
integrating over assumed prior distributions. All that
would be necessary would be to draw random parameter
values from the appropriate distributions for each rep-
licate of the Monte Carlo integration described above.

Discussion

We have presented a stochastic model that predicts
the distribution of coalescence times in the intraallelic
gene genealogy of an allele that arose once by mutation.
The key assumption is that the allele of interest is and
has been sufficiently rare that each copy in the popu-
lation reproduces independently of each other copy (see
Appendix B). We have shown that the distribution of
coalescence times depends on both the population
growth rate and the fraction of the population repre-
sented in the sample. From the distribution of coales-
cence times, a model of recombination and mutation at
a linked marker locus, and the assumption that all copies
of the mutant are equivalent, we obtain the likelihood
of a configuration, Y0, of alleles at a marker locus. That
likelihood function, which we can estimate to an arbi-
trary degree of accuracy by using a Monte Carlo pro-
cedure, provides the basis for estimating the recombi-
nation rate between a marker and a novel mutant locus,
the mutation rate at a marker locus, or the time of origin
of the mutant.

For the purpose of disequilibrium mapping, our re-
sults are similar to those of Kaplan et al. (1995) and
Xiong and Guo (1997), in that we compute the likeli-
hood of an observed configuration of linked markers.
Our method has the advantage that, unlike the Kaplan
et al. (1995) method, it does not require extensive sim-
ulations and that, unlike the Xiong and Guo (1977)
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Figure 7 Log likelihood (�) of the age of the Alu(�) allele in
non-Africans in the Tishkoff et al. (1996) data set. The upper curve
is for t1, the earliest time at which the allele ancestral to all copies of
Alu(�) in non-Africans formed a distinct lineage, and the lower curve
is for t2, the age of the most recent common ancestor in the gene
genealogy of Alu(�) alleles in non-Africans. For these curves, i �B

, , , , and�7 �6269 Y � 264 y � .002 f � 1.78 # 10 m � 5.88 # 100.B B B

(the MLE from fig. 6).

method, it does not rely on approximations that are
difficult to verify independently. The only approxima-
tion that we use is to assume that the number of copies
of a low-frequency allele can be modeled by a linear
birth-death process. Nevertheless, all the likelihood
methods produce results that are similar and that, for
practical purposes, may well be equivalent. All the meth-
ods also require assumptions about the demographic his-
tory of the sample population; and those assumptions
are probably not true. Different likelihood methods will
give slightly different results for the same data set and
demographic parameter values, but uncertainty about
the sample population is probably a greater source of
error than are any of the mathematical assumptions or
approximations that are made.

Because of the uncertainly about demographic para-
meters, methods that do not seem to require as many
assumptions—such as the method of moments and the
Hästbacka et al. (1992) method, which relies on the
Luria-Delbrück theory—may seem preferable, on intu-
itive grounds. Those methods, however, make implicit
assumptions about the gene genealogy of the mutant
allele class; and those assumptions are more restrictive
than the assumptions made in the likelihood methods.
The method of moments implicitly assumes a star ge-
nealogy, and the Luria-Delbrück theory assumes a ge-
nealogy with synchronous symmetrical branching.
Those methods may provide adequate answers in some

cases, as the Luria-Delbrück theory did for the mapping
of DTD in the Finnish population, but likelihood meth-
ods should work in a much wider variety of situations.
Freely distributed computer programs, including ours,
make the use of likelihood methods for disequilibrium
mapping relatively easy. Even when demographic par-
ameters are not known with confidence, likelihood
methods provide a framework within which to explore
the sensitivity of the results to different parameter values.
Because the likelihood method that we have developed
uses Monte Carlo integration to evaluate the probability
of the observed data, it is easy to take account of un-
certainties in estimates of parameters such as population
size or mutation rate, by assigning to these parameters
a prior distribution that reflects these uncertainties and
then integrating over this prior during the Monte Carlo
integration.

For the purpose of estimating the ages of alleles, there
may be greater differences between the likelihood meth-
ods discussed, although most of the other methods have
not been applied to the problem of the estimation of
allele age (but see Guo and Xiong 1997). The approach
of Kaplan et al. (1995) is similar to ours but does not
lend itself to the development of analytic theory pointing
to the intrinsic limitations of estimating allele age, and
it would lead to computational problems for old alleles.
The method of Xiong and Guo (1997) is based on an
approximation that may not remain valid when the time
of appearance of the mutant is allowed to vary.

Population Subdivision

All of the likelihood methods discussed here, including
ours, assume a single randomly mating population.
There is probably some subdivision even in relatively
homogeneous populations, including the population of
Finland. For other populations, including Ashkenazi
Jews and sub-Saharan Africans, the assumption of no
subdivision is even less likely to be true. Models based
on either a branching process or a birth-death process
are somewhat insensitive to population subdivision, be-
cause they assume that each copy of the mutant allele,
M, reproduces independently. If there is population sub-
division, however, our method and those of Kaplan et
al. (1995) and Xiong and Guo (1997) require the implicit
assumption that each subpopulation grows at the same
rate and that the same fraction, f, of each subpopulation
is sampled. Further work is needed to quantify the effects
of population subdivision when these implicit assump-
tions are invalid.

Conclusions

Although it is difficult to generalize from our results,
because of the many parameters in our model, the three
examples that we have analyzed, as well as other cases
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that we have examined in the course of this study, sug-
gest that likelihood methods are quite robust for the
estimation of recombination rates, which is the goal of
disequilibrium mapping (Lander and Botstein 1986). Es-
timates of c, such as those for the data of Hästbacka et
al. (1992), are relatively insensitive to values of f (i.e.,
the sampling fraction), y (i.e., the population growth
rate), and, most important, to t1 (the time of founding
of the population). For the Hästbacka et al. (1992) data
set, we found that it made little difference, in the estimate
of c, whether we assumed or much larger valuest � 1001

of t1. In contrast, it can be difficult to accurately estimate
t1, the time at which the mutant arose, when t1 is mod-
erately large, particularly if the population has been
growing rapidly. When there has been rapid growth, the
coalescence times will be relatively recent, even though
the mutant may have arisen in the distant past. As a
consequence, substantial disequilibrium is expected in
the data, regardless of allele age, and the confidence
interval on estimates of allele age can therefore be quite
broad. Surprisingly, allele frequency alone, when the re-
sults from Slatkin and Rannala (1997) are used, can
provide narrower bounds on estimates of allele age. Nei-
ther the limitations of disequilibrium analysis for esti-
mation of allele age nor its robustness for estimation of
recombination rates appears to result from special sim-
plifying assumptions in our analysis. Rather, these results
appear to arise from intrinsic properties of intraallelic
gene genealogies in growing populations.

Program Availability

The method described in this paper for calculation of
the log likelihoods of different haplotype configurations
has been implemented as a computer program written
in the C language. The program DMLE is available ei-
ther by anonymous ftp at mw511.biol.berkeley.edu
or on the World Wide Web at http://mw511.biol
.berkeley.edu/software.html.
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Appendix A

Statistical Properties of the Moments Estimator of Allele
Age

In this appendix, we show that the estimator

log (i) � log (i � Y )0t̂ � , (A1)2 u

obtained by setting the observed fraction of nonmutated
markers equal to the expected proportion(i � Y )/i0

exp{�ut2} and solving for t2, is an MLE if the genealogy
of the sample is a star genealogy. We use the fact that,
for a rare mutation, essentially all recombination events
involve individuals heterozygous for M. Because recom-
bination events on each branch are independent in a star
genealogy,

i Y i�Y0 0L(qFY ) � q (1 � q) ,0 ( )Y0

where denotes the likelihood function and whereL(qFY )0

. The MLE of q is then . By the in-�ut2 ˆq � 1 � e q � j/i
variance property of MLEs (see Casella and Berger
1990), equation (A1) provides an MLE of t2, since we
can solve for t2 as a function of the MLE when m isq̂
known. The approximate asymptotic variance for the
MLE of t2 is

2� � log (1�q) F[ ]{ } ˆq�q�q u Y0ˆVar(t ) ≈ � .2 2� i(i � Y )u2� log L(qFY )F 0ˆ0 q�q�q

Appendix B

Distribution of Intraallelic Coalescence Times

In this appendix, we derive the distribution of coa-
lescence times for a sample of chromosomes descended
from a nonrecurrent mutant ancestor M that arose at
generation t1 in the past. It is assumed that the genealogy
of a sample of chromosomes from the population as a
whole can be described by the coalescent process of
Kingman (1982). A continuous-time approximation is
used, with time measured in generations. Let n(0) be the
total number of chromosomes sampled, and let 2N be
the total number of chromosomes in the population (i.e.,
N diploid individuals) with . The populationn(0) K 2N
size may vary over time, in which case we let N(t) be
the (diploid) population size at time t in the past, with
N(0) as the current population size. Let j(0) be the num-
ber of M-bearing chromosomes in the sample, and let

be the number of ancestors of the sampledj(t) X j(0)
M-bearing chromosomes at time t in the past. Let n(t)
be the total number of chromosomes existing at time t
in the past that are ancestral to the n(0) sampled chro-
mosomes, where . Let i(t) be the number ofn(t) x j(t)
nonmutant chromosomes existing at time t that are an-
cestral to the sample, so that . If j(t) an-n(t) � i(t) � j(t)
cestral M-bearing chromosomes exist at time t,then the
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probability that one additional M-bearing chromosome
arises during the interval ( ) and leaves descen-t, t � dt
dants in the sample is

n(0)�j(0)

[ ]P j(t � dt) � j(t) � 1 � � P[j(t � dt)
i(t)�1

[ ]� j(t) � 1Fi(t)]P i(t) ,

where

P[j(t � dt) � j(t) � 1Fi(t)] (B1)

1 j(t)
[ ][ ]� i(t) � j(t) i(t) � j(t) � 1 dt[ ]4N(t) i(t) � j(t)

1
[ ]� i(t) � j(t) � 1 j(t)dt .

4N(t)

The first three terms of the product on the right-hand
side of equation (B1) give the probability that a coales-
cence event occurs during dt, whereas the last term gives
the probability that the coalescence event involves an M-
bearing chromosome. The unconditional probability is
then

[ ]P j(t � dt) � j(t) � 1
n(0)�j(0)

1
[ ] [ ]� � i(t) � j(t) � 1 j(t)P i(t) dt .

i(t)�1 4N(t)

If the mutant M has remained rare, so that i(t) k j(t)
and , theni(t) � n(t)

n(0)�j(0)
j(t)

[ ] [ ]P j(t � dt) � j(t) � 1 � � i(t)P i(t) dt
4N(t) i(t)�1

j(t)
� E[i(t)]dt

4N(t)

j(t)
� E[n(t)]dt .

4N(t)

For a population of deterministically variable size, an
approximate expression for E[n(t)], when this value is
large is (according to Slatkin and Rannala 1997)

n(0)
E[n(t)] � ,

1 � n(0)t(t)/2

where t(t) is time, rescaled to allow for variable popu-
lation size,

t ′dt
t(t) � .� ′2N(t )0

With a constant population size, the transition proba-
bility is then

n(0)
[ ]P j(t � dt) � j(t) � 1 � j(t)dt

(1 � n(0)t/2)4N(0)

f/2
� j(t)dt ,

1 � ft/2

where is the fraction of chromosomes inf � n(0)/2N(0)
the population that are sampled. This is the instanta-
neous birth rate for the “reconstructed” linear birth-
death process (Nee et al. 1994), which describes the
growth of the lineages that ultimately leave descendants
in the sample, with , where B is the birthB � D � 1/2
rate, and where D is the death rate, per lineage (see
Slatkin and Rannala 1997).

If the population has experienced exponential growth
at rate r, then we use the time transformation t(t) �

to obtainrt(e � 1)/ [2N(0)r]

P[j(t � dt) � j(t) � 1]

n(0)
� rt [ ]1 � n(0)(e � 1)/ 4N(0)r

1
j(t)dt

4N(t)

fr
� j(t)dt .

�rtf � (f � 2r)e

This is the instantaneous birth rate for a “reconstructed”
linear birth-death process with andB � 1/2 D �

.1/2 � r

Appendix C

Transition Probabilities

In this appendix, we derive the transition probabilities
between chromosomal haplotypes for a model with re-
combination between a nonrecurrent mutation M linked
to a single marker locus A with two alleles, A1 and A2,
which experience reversible mutations. We use a contin-
uous-time Markov process to model mutation and re-
combination. During an infinitesimal time interval Dt,
the probability that a transition occurs from haplotype
MA1 to haplotype MA2 is , whereuDt � o(Dt) u � m �

, m is the instantaneous mutation rate from A1 to A2,cp
c is the recombination rate between M and marker A,
p is the frequency of A2, and is the frequency of1 � p
A1 among normal chromosomes (which is assumed to
be constant). We focus our attention on haplotypes from
individuals heterozygous for mutation M, so that re-
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combination always occurs between a normal chro-
mosome and an M chromosome (see main text). The
probability of a transition from haplotype MA2 to hap-
lotype MA1 during Dt is , wherevDt � o (Dt) n � v �

and v is the instantaneous mutation rate fromc(1 � p)
A2 to A1. The Kolmogorov forward equations are

dP (t)i1 � �uP (t) � vP (t)i1 i2dt

and

dP (t)i2 � uP (t) � vP (t) ,i1 i2dt

where is the probability that a lineage un-i � 1, 2, P (t)ij

dergoes the transition in time t, where a “1” in thei r j
subscript denotes haplotype MA1 and where a “2” de-
notes haplotype MA2. Note that P (t) � P (t) �11 12

and that, by substitution, we haveP (t) � P (t) � 121 22

dP (t)11 � (u � v)P (t) � v11dt

and

dP (t)22 � (u � v)P (t) � u .22dt

Solving the above equations with the initial conditions
and givesP (0) � 1 P (0) � 111 22

v u v�t(u� )P (t) � � e ,11 u � v u � v

u v�t(u� )[ ]P (t) � 1 � P (t) � 1 � e ,12 11 u � v

u v v�t(u� )P (t) � � e ,22 u � v u � v

and

v v�t(u� )[ ]P (t) � 1 � P (t) � 1 � e .21 22 u � v
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